Lipid-Anchored SNAREs Lacking Transmembrane Regions Fully Support Membrane Fusion during Neurotransmitter Release
نویسندگان
چکیده
Synaptic vesicle fusion during neurotransmitter release is mediated by assembly of SNARE- and SM-protein complexes composed of syntaxin-1, SNAP-25, synaptobrevin-2/VAMP2, and Munc18-1. Current models suggest that SNARE-complex assembly catalyzes membrane fusion by pulling the transmembrane regions (TMRs) of SNARE proteins together, thus allowing their TMRs to form a fusion pore. These models are consistent with the requirement for TMRs in viral fusion proteins. However, the role of the SNARE TMRs in synaptic vesicle fusion has not yet been tested physiologically. Here, we examined whether synaptic SNAREs require TMRs for catalysis of synaptic vesicle fusion, which was monitored electrophysiologically at millisecond time resolution. Surprisingly, we find that both lipid-anchored syntaxin-1 and lipid-anchored synaptobrevin-2 lacking TMRs efficiently promoted spontaneous and Ca(2+)-triggered membrane fusion. Our data suggest that SNARE proteins function during fusion primarily as force generators, consistent with the notion that forcing lipid membranes close together suffices to induce membrane fusion.
منابع مشابه
Caught in the act: visualization of SNARE-mediated fusion events in molecular detail.
Neurotransmitter release at the synapse requires fusion of synaptic vesicles with the presynaptic plasma membrane. SNAREs are the core constituents of the protein machinery responsible for this membrane fusion, but the actual fusion mechanism remains unclear. Here, we have simulated neuronal SNARE-mediated membrane fusion in molecular detail. In our simulations, membrane fusion progresses throu...
متن کاملA lipid-anchored SNARE supports membrane fusion.
Intracellular membrane fusion requires R-SNAREs and Q-SNAREs to assemble into a four-helical parallel coiled-coil, with their hydrophobic anchors spanning the two apposed membranes. Based on the fusion properties of chemically defined SNARE- proteoliposomes, it has been proposed that the assembly of this helical bundle transduces force through the entire bilayer via the transmembrane SNARE anch...
متن کاملSec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion.
Intracellular membrane fusion requires SNARE proteins in a trans-complex, anchored to apposed membranes. Proteoliposome studies have suggested that SNAREs drive fusion by stressing the lipid bilayer via their transmembrane domains (TMDs), and that SNARE complexes require a TMD in each docked membrane to promote fusion. Yeast vacuole fusion is believed to require three Q-SNAREs from one vacuole ...
متن کاملComplexin cross-links prefusion SNAREs into a zigzag array
Release of neurotransmitter at the synapse must be timed precisely to immediately follow the arrival of a nervous impulse. The physiological and anatomical mechanisms for this have long been known1,2. Synaptic vesicles containing neurotransmitter are already docked at the ‘active zones’ of the presynaptic membrane, ready to respond to the elevated calcium levels that accompany an action potenti...
متن کاملA short region upstream of the yeast vacuolar Qa-SNARE heptad-repeats promotes membrane fusion through enhanced SNARE complex assembly
Whereas SNARE (soluble N -ethylmaleimide-sensitive factor attachment protein receptor) heptad-repeats are well studied, SNAREs also have upstream N-domains of indeterminate function. The assembly of yeast vacuolar SNAREs into complexes for fusion can be studied in chemically defined reactions. Complementary proteoliposomes bearing a Rab:GTP and either the vacuolar R-SNARE or one of the three in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 80 شماره
صفحات -
تاریخ انتشار 2013